Hello I'm

Dr. Andi Sunyoto M.Kom

Lecturer of Universitas Amikom Yogyakarta
  • Computer Vision
  • Computer science
  • Artificial Intelligence
  • Digital Image Processing
Research ID

Contact Me
hero
Hero
Profile

About

Andi Sunyoto is currently a Associate Professor (Assoc. Professor) and researcher at the Department of Computer Science Universitas Amikom Yogyakarta, Indonesia. He received a bachelor’s degree in computer science from Universitas Amikom Yogyakarta, Indonesia 2003. He received both his Master’s (M.Kom) and Doctoral (Dr) degrees in Computer Science Universitas Gadjah Mada, Yogyakarta, Indonesia, in 2007 and 2019, respectively. His research interests are artificial intelligence, pattern recognition, computer vision, data mining, and multimedia.

Download Curriculum Vitae

Associate Professor of Professor

80%

Python

85%

Matlab

75%

HTML/CSS

90%

Sketch

65%

shape
Profile

Educational

Bachelor

Infor. System

2003

Universitas Amikom Yogyakarta

  • Analisis dan Perancangan Sistem Informasi Penjualan Buku Online AMIKOM Yogyakarta
  • Supervisor: Ir. Abbas Ali Pangera, Arief Setyanto, Ssi
Master

Computer Science

2007

Universitas Gadjah Mada

  • Integrasi Modul GPS Reciever dan GPRS untuk Penentuan Posisi dan Jalur Pergerakan Obyek Bergerak (Studi Kasus: Penentuan Posisi Taksi di Yogyakarta)
  • Supervisor: Prof. Drs. Jazi Eko Istiyanto, M.Sc.,Ph.D
Doctoral

Computer Science

2019

Universitas Gadjah Mada

  • Identifikasi Jari Tangan Menggunakan Fitur Geometri dan Analisa Kontur (Finger Identification Using Geometric Features and Contour Analysis)
  • Supervisor: Drs. Agus Harjoko, M.Sc,Ph.D; Drs. Retantyo Wardoyo, M.Sc, Ph.D; Mochamad Hariadi, ST., M.Sc., Ph.D
shape
Research

Publications

Research

Books

author

Evolutionary Machine Learning: Pembelajaran Mesin Otonom Berbasis Komputasi Evolusioner

  • Year: 2020
  • Number of page: 496 Hal + xvi
  • ISBN: 9786237131380
  • Publisher: Informatika Bandung
  • Author: Dr. Suyanto ST., M.Sc; Andditya Arifianto ST., MT; Rita Rismala ST., MT; Dr. Andi Sunyoto M.KOM
  • author

    Adobe Flash + XML = Rich Multimedia Application

  • Year: 2010
  • Number of page: 292
  • ISBN: 9789792913880
  • Publisher: Andi Publisher
  • Author: Andi Sunyoto, M.Kom
  • author

    Membangun Web dengan Teknologi Asynchronouse JavaScript dan XML

  • Year: 2008
  • Number of page: 226
  • ISBN: 9789792902228
  • Publisher: Andi Publisher
  • Author: Andi Sunyoto, M.Kom
  • author

    Pemrograman Database Dengan Visual Basic Dan Microsoft SQL

  • Year: 2007
  • Number of page: 258
  • ISBN: 9789792900590
  • Publisher: Andi Publisher
  • Author: Andi Sunyoto, M.Kom
  • shape
    Research

    Grants

    PF-R

    Penelitian Fundamental - Reguler

    IDR 118,060,000

    Year: 2024

    • Explainable Artificial Intelligence untuk Deep Learning Berbasis Deteksi Penyakit Daun Kentang
    • Ministry of Education, Culture, Research, and Technology
    PTUPT

    Penelitian Terapan Unggulan Perguruan Tinggi

    IDR 147,635,000

    Year: 2023

    • Sistem Deteksi Penyakit Tanaman Kentang Berdasarkan Citra Daun Berbasis Deep Learning untuk Mendukung Pertanian Cerdas
    • Ministry of Education, Culture, Research, and Technology
    PTUPT

    Penelitian Terapan Unggulan Perguruan Tinggi

    IDR 160,000,000

    Year: 2022

    • Sistem Deteksi Penyakit Tanaman Kentang Berdasarkan Citra Daun Berbasis Deep Learning untuk Mendukung Pertanian Cerdas
    • Ministry of Education, Culture, Research, and Technology
    PDD

    Penelitian Disertasi Doktor

    IDR 52,500,000

    Year: 2016

    • Otomatisasi Deteksi Jari Menggunakan Pendekatan Sendi Metacarpophalangeal Dan Fitur Geometri Untuk Pengenalan Gestur Tangan
    • Ministry of Education, Culture, Research, and Technology
    shape
    Research

    Intelectual Properties (IP)

    Research

    Reviewers or Editors of Journals or Conferences

    shape
    Comm. Services

    Data of Community Services

    Profile

    Favorite Quote

    author

    Thomas Edison

    Co-Founder, General Electric

    “The value of an idea lies in the using of it.”

    author

    Jack Dorsey

    Co-Founder and CEO, Twitter

    “Make every detail perfect and limit the number of details to perfect.”

    author

    Joel Spolsky

    Co-Founder, Stack Overflow

    “Nothing works better than just improving your product.”

    Profile

    Award

    Insentif Paper

    Insentif Paper : “Wrist detection based on a minimum bounding box and geometric features”

    • Quartile Q1
    • From Ristek DIKTI
    • Year: 2019
    • Grant: 20.520.000

    Award

    Judul Karya V-Track Sebagai Pemenang I Kategori Research and Development AMIKOM ICT Award (AMICTA)

    • From Amikom Yogyakarta
    • Year: 2009

    Award

    Sertifikat Penghargaan Sebagai Nominator Kategori Research and Development Indonesia ICT Award (INAICTA) dengan karya "V-Track:Online Vihicles Tracking System"

    • DEPKOMINFO (INAICTA 2009)
    • Year: 2009

    Award

    Sertifikat Penghargaan Sebagai Juri pada Kegiatan AMIKOM ICT Award 2013

    • From: STMIK AMIKOM YOGYAKARTA
    • Year: 2009

    Award

    Sertifikat Penghargaan Sebagai Peserta Paper Terbaik SNATi 2013

    • From: UII (SNATi 2013)
    • Year: 2013

    shape
    Academic

    Lecturer

    Artificial

    Intelligence

    Lecture Slides

    1. 01. Introduction AI
    2. 02. K-Nearest Neighbor
    3. 03. Naive Bayes
    4. 04. Linear Regression
    5. 05. K-Means
    6. 06. Introduction AI
    7. 07. K-Nearest Neighbor
    8. 08. Ujian Tengah Semester
    9. 09. Naive Bayes
    10. 10. Linear Regression
    11. 11. K-Means
    12. 12. Introduction AI
    13. 13. K-Nearest Neighbor
    14. 14. Naive Bayes
    15. 15. Linear Regression
    16. 16. Ujian Akhir Semester (UAS)

    Mata Kuliah Artificial Intelligence melatih mahasiswa untuk memahami ide dasar, intuisi, konsep, algoritma dan teknik untuk membuat komputer menjadi lebih cerdas melalui proses learning from data. Materi yang disampaikan fokus pada konsep AI yang paling populer yaitu Machine Learning.

    Statistic

    Basic

    Lecture Slides

    1. 01. Intro Statistics
    2. 02. Frequency Distribution
    3. 03. Central Tendency
    4. 04. Measurement of Position
    5. 05. Measurement of Dispersion
    6. 06. Skewness of Data
    7. 07. Measurement of Kurtosis
    8. 08. Ujian Tengah Semester
    9. 09. Liner Regression
    10. 10. Performance of Regression
    11. 11. Multivariate Linear Regression
    12. 12. Moving Averages
    13. 13. Simple Exponential Smoothing
    14. 14. Correlation Analysis
    15. 15. Research Trends of Forecasting
    16. 16. Ujian Akhir Semester (UAS)

    Mata Kuliah Statistic melatih mahasiswa untuk memahami ide dasar, intuisi, konsep statistik, dan penggunaan ilmu statistik untuk penyelesaian masalah dibidang komputer. Materi yang disampaikan fokus pada konsep statistik dan penggunaan statistik untuk peramalan (forecasting).

    Research

    Methodology

    Lecture Slides

    1. 01. Konsep Dasar Penelitian
    2. 02. Klasifikasi Penelitian
    3. 03. Tema, Trend Penelitian Populer
    4. 04. Teknik, Langkah, dan Organisasi Referensi Penelitian
    5. 05. Literatur Review
    6. 06. Identifikasi Masalah
    7. 07. Desain, Teknik Penulisan Bab 1-3, Sample Penelitian)
    8. 08. Ujian Tengah Semester (Proposal Penelitian (Bab 1-3))
    9. 09. Teknik Pengumpulan Data, Data Understanding
    10. 10. Desain Eksperimen
    11. 11. Teknik hasil dan temuan penelitian (Sample penelitian)
    12. 12. Teknik penulisan Paper (Hasil, diskusi dan kesimpulan)
    13. 13. Presentasi draft paper #1
    14. 14. Presentasi draft paper #2
    15. 15. Review hasil penelitian, Publication ethic
    16. 16. Ujian Akhir Semester (Draft Paper Hasil Penelitian (Bab 4-5))

    Mata kuliah metodologi penelitian memberikan pemahaman mahasiswa untuk mampu menerapkan konsep dasae penelitian. Pada akhir kuliah, mahasiswa dapat menghasilkan draf proposal penelitian yang akan dikerjakan

    Business

    Intelligence

    Lecture Slides

    1. 01. Intro Business Intelligence
    2. 02. Data Warehousing and Data Mining
    3. 03. Business Reporting, Visual Analytic, and Business Performance
    4. 04. Data Mining
    5. 05. Technique for Predictive Modelling
    6. 06. Presentation Interactive Dashboard Week #1
    7. 07. Presentation Interactive Dashboard Week #2
    8. 08. Ujian Tengah Semester
    9. 09. Discuss for Final Project Predictive Analytic
    10. 10. Text Analytic, Text Mining, and Sentiment Analysis
    11. 11. Web Analytic, Web Mining, and Social Analysis
    12. 12. Big Data and Analytic | How to Write the Research
    13. 13. Emerging Trends and Future Impacts
    14. 14. Presentation Predictive Analysis Week #1
    15. 15. Presentation Predictive Analysis Week #2
    16. 16. Ujian Akhir Semester

    Business Intelligence (BI) refers to technologies, applications, and practices for the collection, integration, analysis, and presentation of business information. The purpose of business intelligence is to support better business decision-making. This course provides an overview of the technology of BI and the application of BI to an organization’s strategies and goals.

    Computer

    Vision

    Lecture Slides

    1. 01. Introduction to Computer Vision
    2. 02. Image Representation and Analysis
    3. 03. Color Space
    4. 04. Project and Paper
    5. 05. Image Filtering
    6. 06. Edge Detection and Template Matching
    7. 07. Image Matching (Corners and Features)
    8. 08. Ujian Tengah Semester
    9. 09. Image Segmentation
    10. 10. How to Write a Paper
    11. 11. Image Future Extraction
    12. 12. Image Classification (Recognition)
    13. 13. Convolutional Neural Network (CNN)
    14. 14. Object Detection & Recognition
    15. 15. Project and Presentation
    16. 16. Ujian Akhir Semester

    Apply techniques to extract useful features from an image. Apply techniques to recognize patterns and objects. Understand and apply theoretical and practical capabilities of Computer Vision. Formulate solutions to problems in Computer Vision. Describe the foundation of image formation and image analysis. Understand the basics of 2D and 3D Computer Vision. Get an exposure to advanced concepts, including state of the art deep learning architectures, in all aspects of computer vision.

    Video

    Collection

    Profile

    Latest Activities

    project
    Research Grant

    Writing a paper potatoes leaf disease

    project
    International Conferences (IEEE)

    IoTaIS 2023 | November 28-30, 2023

    project
    International Conferences (IEEE)

    IoTaIS 2023 | November 28-30, 2023

    project
    International Conferences (IEEE)

    IoTaIS 2023 | November 28-30, 2023

    project
    Project 03

    Desc. Project 03

    project
    Research Grant

    Dataset collecting for grant research

    Need my contact ?

    Phone : +62813 2898 double-four double-five

    Email: andi[at]amikom.ac.id

    Senior Lecturer (200 AK)

    NIDN: 05070277001

    Office: Universitas Amikom Yogyakarta, Jl. Ringroad Utara, Condong Catur, Depok, Sleman, Yogyakarta 55283, Indonesia